CTD dfo-walle652-20200616
November 10, 2025

1 CTD corrections applied to delayed-mode data

This notebook performs analysis and correction of GPCTD data from the following C-PROOF
glider deployment:

[1]: | glider_name = 'dfo-walle652'
deploy_name = f'{glider_name}-20200616"
deploy_prefix = f'./glider/{glider_name}/{deploy_name}/'
filepath = f'deployments/{glider_name}/{deploy_namel}/' # having this is,
wimportant later for functions that auto-load data

openfile = f'{filepath}/{deploy_name}_delayed.nc'
opengridfile = f'{filepath}/{deploy_name}_grid_delayed.nc'
deployfile = f'{filepath}/{deploy_name}.yml'

description = 'Line P'
initials = 'LT'

CID specs:
sensor = 'CTD_9409'

For conductivity filter:
accuracy = 0.0003 #accuracy of the sensor is 0.0003 S/m, used as a cutoff ony
~the exclusion criterion

from datetime import date

processing_date = date.today().strftime('Y/m%d")

processing _protocol = 'C-PROOF_SBE_CTDProcessingReport_v0.2.pdf'
processing _report = 'TBD' # 'CTD_dfo-bb046-20220707_ v3'

Import module for loading .md files
from IPython.display import Markdown, display
import os

os.chdir(f'/Users/Lauryn/Documents/processing/")

[2]:

[3]:

[4] :

Summarize info for report:

print (f '** {description}: glider {glider_namel}*x')
print (£ ' **xkkkskkkxskk ')

print (f'* Deployment: {deploy_namel}')

print(f'* Sensor: {sensorl}')

print(f'")

print (f'* Protocols are detailed in: {processing protocol}t')

print(f'* Processing steps will be saved in: CTD_{deploy_namel}.html')

print (f'* Files will be located in: {deploy_prefiz}t')

print(f'* Processed by {initials}, Ocean Sciences Division, Fisheries and,
~0ceans Canada')

print(f'* Processing date: {processing_datel}')

** Line P: glider dfo-walle652*x*
ok ok ok K K ok ok K Kk ok

* Deployment: dfo-walle652-20200616
* Sensor: CTD_9409

* Processing steps will be saved in: CTD_dfo-walle652-20200616.html
* Processed by LT, Ocean Sciences Division, Fisheries and Oceans Canada
* Processing date: 20251107

display(Markdown("./docs/CTD_1_Preamble.md"))

2 1.0 Preamble

This document describes conductivity, temperature, and pressure data processing steps applied to
delayed mode data collected using Sea-Bird Scientific Glider Payload Conductivity Temperature
Depth (GPCTD) sensors mounted on C-PROOF Slocum and SeaExplorer autonomous ocean glid-
ers. This sensor has a nominal sampling rate of 1 Hz and was designed specifically for Slocum
gliders. This document covers the application of the sensor alignment correction and the thermal
lag correction, as well as removal of questionable conductivity values and salinity profiles.

2.1 1.1 Set up the processing

The processing steps below are applied to delayed mode data stored in a single netcdf timeseries
file created using the Pyglider data processing package (https://github.com/c-proof/pyglider).

The metadata and sensor calibration sheets are available via the deployment page on the
C-PROOF website at: https://cproof.uvic.ca/gliderdata/deployments/dfo-bb046 /dfo-
bb046-20220707/

import warnings
warnings.filterwarnings('ignore')

import xarray as Xr
import numpy as np

import pathlib
import pyglidersensor as pgs
from pyglider.ncprocess import make_gridfiles

from datetime import datetime, date
Jmatplotlib ipympl

import scipy.stats as stats

import seawater
import gsw

Jmatplotlib notebook

Jmatplotlib inline

import matplotlib.pyplot as plt

import matplotlib.dates as mdates

from matplotlib.dates import DateFormatter
import cmocean

import cartopy.crs as ccrs

import cartopy.feature as cfeature

import pandas as pd

%load_ext autoreload
%autoreload 2

from scipy import signal
import seawater as sw

[5]: | Ymatplotlib ipympl

2.2 1.2 Profile Check

Check that upcasts and downcasts are being properly identified. Negative values should be
associated with upcasts.

[6]: print(f'Loading: {openfilel}')

caption = ('Identifying upcasts and downcasts. The left panel shows '
'pressure vs. time and the right panel shows profile direction vs.
'time for a small subset of the time series:')

fname = openfile

with xr.open_dataset(fname) as dsO:

SAVE SOME PARAMS FOR PLOTTING DOWN BELOW!
N = len(dsO.time)

MAX_DEPTH = np.nanmax(dsO.depth)
NUM_PROFILES = np.nanmax(dsO.profile_index)

print (' kkkskokkskskkkkok ')
print(f'* There are {N} data points in total, with {NUM_PROFILES} profiles')
print(f'* Time period: {pd.to_datetime(np.nanmin(dsO.time)).
ostrftime ("%Y-%m-%d")} to {pd.to_datetime(np.nanmax(dsO.time)).
wstrftime ("%Y-/m-%d")}")
print (f'* Depth range: {round(np.nanmin(dsO.depth))} - {round(MAX_DEPTH)}
ometres')
print (' kksksskkkkkkkk ')

if N > 50000:

todo = slice(int(N/2)-5000, int(N/2)+5000)
else:

todo = slice(int(N/3), int(2xN/3))

fig, axs = plt.subplots(nrows=1, ncols=2,
constrained_layout=True,
figsize=(9, 4))

ds = ds0.isel(time=todo)

axs[0] .plot(ds.time, ds.pressure, '.', markersize=1)
axs[0] .set_ylim([MAX_DEPTH, 0])

axs[0] .set_ylabel ('Pressure [dbar]')

axs[0] .tick_params(axis='both', labelsize=8)

axs[0] .grid(axis="x")

axs[1] .plot(ds.time, ds.profile_direction, '.', markersize=1)
axs[1] .set_ylabel('Profile Direction')

axs[1] .tick_params(axis='both', labelsize=8)

axs[1] .grid(axis="'x")

print (caption)

Loading: deployments/dfo-walle652/dfo-walle652-20200616//dfo-
walle652-20200616_delayed.nc

kokok ok ok ok ok ok ok ok ok ok

* There are 567914 data points in total, with 330.0 profiles

* Time period: 2020-06-16 to 2020-07-01

* Depth range: 0 - 987 metres

ko ok ok ok ok ok ok ok ok ok

Identifying upcasts and downcasts. The left panel shows pressure vs. time and
the right panel shows profile direction vs. time for a small subset of the time
series:

1.00

0.75
200 +

0.50
0.25

400

0.00

Pressure [dbar]
Profile Direction

600 —0.25 4

—0.50

800

—0.75

—1.00

T T T T T T T T T T T T
06-2317 06-2318 06-2319 06-23 20 06-23 21 06-23 22 06-2317 06-2318 06-2319 06-23 20 06-23 21 06-23 22

2.3 1.3 Delayed-mode data prior to corrections

Checking fields (temperature, salinity, conductivity and density) in the delayed-mode data, before
any CTD corrections:

[7]: tds = opengridfile
ds = xr.open_dataset(tds)
list(ds.keys())

fig, axs = plt.subplots(4, 1, figsize=(11, 10), sharey=True, sharex=True)

xlims = [0, NUM_PROFILES]
y1lims=[MAX_DEPTH, 0]
ylims=[50,0]

pc = axs[0].pcolormesh(ds.profile, ds.depth, ds['salinity'],rasterized=True)
axs[0] .set_ylim(ylims)

axs[1] .set_x1lim(xlims)

fig.colorbar(pc, ax=axs[0], label = 'Salinity [psul')

axs[0] .set_title('Salinity',loc="'left')

pc = axs[1] .pcolormesh(ds.profile, ds.depth,,
~ds['temperature'] ,rasterized=True,cmap="'plasma')

fig.colorbar(pc, ax=axs[1], label = 'Temperature [$ o$C]')

axs[1] .set_title('Temperature',loc="'left')

pc = axs[2] .pcolormesh(ds.profile, ds.depth,,
~ds['conductivity'],rasterized=True,cmap="'cividis')

fig.colorbar(pc, ax=axs[2], label = 'Conductivity [S/m]')

axs[2] .set_title('Conductivity',loc="'left"')

pc =

wds['ozygen_concentration'],rasterized=True, cmap="inferno’')

azs[3].pcolormesh(ds.profile, ds.depth,

fig.colorbar(pc, az=axs[3])
axs[3].set_title('Ozygen Concentration’,loc='left’')

pc = axs[3] .pcolormesh(ds.profile, ds.depth,,

~ds['density'],rasterized=True,cmap="'inferno')
fig.colorbar(pc, ax=axs[3], label = 'Density [kg/m$~3$]')
axs[3] .set_title('Density',loc='left')

axs[0] .
axs[1].
axs[2].
axs[3].

set_ylabel('Depth [m]');
set_ylabel('Depth [m]');
set_ylabel('Depth [m]');
set_ylabel('Depth [m]');

Depth [m] Depth [m] Depth [m]

Depth [m]

Salinity
0

200 4
400 -
600

800 4

0 Temperature
B —

200 4

400 -

600

800 1

Conductivity

0
L
200 4

400 -

600 4

800 1

Density

- 1030

- 1026

Conductivity [S/m] Temperature [°C] Salinity [psu]

=
o
)
@

Density [kg/m?]

| 1024

[8]:

[9]:

display(Markdown("./docs/CTD_2_Steps.md"))

3 2.0 Corrections applied to delayed mode data for this mission

Processing steps:

Identification of anomalous conductivity values
Identification of questionable salinity profiles
Sensor alignment correction

Thermal lag correction

Ll

3.1 2.1.1 Identification and removal of anomalous conductivity values

We identify and remove any conductivity values that are obviously unphysical, which is typically
caused by air bubbles in the conductivity cell. We use a simple criterion applied to the raw con-
ductivity data. The criterion temporarily flags any data points that are more than 5 standard
deviations away from the overall time series mean for a given depth bin and profile bin, then
recomputes the mean and standard deviation, excluding the temporarily flagged values. Conduc-
tivity values that still differ from the mean by more than 3 standard deviations are flagged as
‘bad’ and set to NaN in the time series. If the difference between the ‘bad’ values and the mean
is less than the accuracy of the sensor, which is 0.0003 S/m for the GPCTD, then those points are
not excluded.

This criterion is applied to data binned first by profile index, in increments of 50 profiles, then
binned by depth, in increments of 5 m. The use of profile index bins rather than time or temperature
bins is designed to allow for the removal of unphysical values.

Adjustments to this correction are based on examining the data and making a judgment call about
which conductivity values are undeniably ‘bad’. In this case, we want to exclude the extremely
low values occurring at the surface consistent with air bubbles in the cell. Some unphysical
values are missed by this correction, and may be caught during the removal of unphysical salinity
profiles in further stepsbelow.

Note that for this mission:

###open the spike free dataset
dsO = xr.open_dataset(f'{filepath}/{deploy_name}_ spikeClean.nc')
ds = xr.open_dataset(f'{filepath}/{deploy_name}_ grid_spikeClean.nc')

srate = stats.mode((np.diff(dsO.time)) .astype('timedeltab4[s]')) .mode

fs = 1/srate.astype(float) #the sampling frequency = 1/(delta t)

print (' sksksskkkskokkkk)

print (f'The mode of the sampling rate for the GPCTD is one sample every {sratel}.
')

print (' kkskkxskokkkkkk ')

3k 3k >k 5k %k 3k 5k %k 5k %k 5k %

The mode of the sampling rate for the GPCTD is one sample every 2 seconds.
sk ok ok koK oK oK oK oK ok ok ok

[10]: # Identify the questionable conductivity values
flag _stdev = 5 #number of standard deviations to temporarily flag bad salinity,
svalues
clean_stdev = 3 #number of standard deviations to flag bad conductivity values,
~after removing the temporary bad values from the calc
dT = 50 #size of the profile bins
dz = 5 #size of the depth bins

ts0 = dsO.copy() #make a copy of the spike-free timeseries
ts0.conductivity[ts0.conductivity<0.1] = np.nan
ts = pgs.get_conductivity_clean(tsO, dT, dz, flag_stdev, clean_stdev, accuracy)

Figures to look at the comparison
fig, ax = plt.subplots(1,3,figsize=(10,4), constrained_layout=True)

ax[0] .plot(ts.conductivity, ts.temperature, color='r', marker='.',
~linestyle='none', label='Removed')

ax[0] .plot(ts.conductivityClean, ts.temperature, color='k', marker='.',
~linestyle='none', label='Retained')

ax[0] .set_ylabel('Temperature [$"0$C]', fontsize=16)

ax[0] .set_xlabel('Conductivity [S/m]', fontsize=16)

ax[0] .grid(axis='both', color='0.5")

ax[1] .plot(ts.conductivity, ts.depth, color='r', marker='.', linestyle='none')

ax[1] .plot(ts.conductivityClean, ts.depth, color='k', marker='.',
~linestyle='none')

ax[1] .set_xlabel('Conductivity [S/m]', fontsize=16)

ax[1] .set_ylabel('Depth [m]', fontsize=16)

ax[1] .invert_yaxis()

ax[1] .grid(axis='both', color='0.5")

ax[2] .plot(ts.profile_index, ts.conductivity, color='r', marker='.',
~linestyle='none')

ax[2] .plot(ts.profile_index, ts.conductivityClean, color='k', marker='.',
~linestyle='none')

ax[2] .set_xlabel('Profile index', fontsize=16)

ax[2] .set_ylabel('Conductivity [S/m]', fontsize=16)

ax[2] .grid(axis='both', color='0.5")

print('Fig 2: Temperature vs. conductivity (left), depth vs. conductivity,,
- (middle), '
'and conductivity vs. profile index (right), '
'with the red dots showing the unphysical values flagged as bad and
owremoved: ')

Fig 2: Temperature vs. conductivity (left), depth vs. conductivity (middle), and
conductivity vs. profile index (right), with the red dots showing the unphysical

[11]:

values flagged as bad and removed:

0 4.0 I1 T T T

14

L] 35 <
— 200 He
QR i §_ 3.0
— —_ 2
E 10 B E 400 >, 2.5
2 = £
© . 1= E 2.0
L Q 600 S
a

E o 15
¢ 6 5
= 800 O 10

4 0.5

1000
1 2 3 4 1 2 3 4 0 100 200 300
Conductivity [S/m] Conductivity [S/m] Profile index

Adjustments to this correction are based on examining the data and making a judgment call about
which conductivity values are undeniably ‘bad’. In this case, we want to exclude the extremely low
values occurring at the surface (Fig. 2) consistent with air bubbles in the cell. Some unphysical
values are missed by this correction, and may be caught during the removal of unphysical salinity
profiles below.

3.2 2.1.2 Remove spikes from biofouling
Manually remove spikes in the data. Sometimes biofouling occurs causing unphysical values.

Now adding zoomed plot

xlim_1 = [0, int(NUM_PROFILES/4)]

xlim_2 = [int(NUM_PROFILES/4), int(NUM_PROFILES/4%2)]
xlim_3 [int (NUM_PROFILES/4%2), int(NUM_PROFILES/4%3)]
xlim_4 = [int(NUM_PROFILES/4%3), NUM_PROFILES]

Y_LIMS [800, 01 #######modified

fig, axs = plt.subplots(4, 1, #height_ratios=[1, 4],
figsize = [12,9],
layout='constrained', sharex=False)

profile_lims = xlim_1

ds_sub = ds.where((ds.profile >=profile_lims[0]) & (ds.profile <=,
~profile_lims[1]), drop=True)

ds_sub = ds_sub.isel(depth=range(200,800))

ax = axs[0]

pc = ax.pcolormesh(ds_sub.profile, ds_sub.depth,
~ds_sub['salinity'],rasterized=True)
axs[0] .set_ylim(Y_LIMS)

fig.colorbar(pc, ax=ax, label = 'Salinity [psu]')
axs[0] .set_title('Salinity',loc='left"')

HAHHHHHH

profile_lims = xlim_2

ds_sub = ds.where((ds.profile >=profile_lims[0]) & (ds.profile <=,
wprofile_lims[1]), drop=True)

ax = axs[1]

pc = ax.pcolormesh(ds_sub.profile, ds_sub.depth,
~ds_sub['salinity'],rasterized=True)

ax.set_ylim(Y_LIMS)

fig.colorbar(pc, ax=ax, label = 'Salinity [psul')
axs[0] .set_title('Salinity',loc="'left')

HARARH

profile_lims = xlim_3

ds_sub = ds.where((ds.profile >=profile_lims[0]) & (ds.profile <=
~profile_lims[1]), drop=True)

axs[2]

pc = ax.pcolormesh(ds_sub.profile, ds_sub.depth,
~ds_sub['salinity'],rasterized=True)

ax.set_ylim(Y_LIMS)

ax

fig.colorbar(pc, ax=ax, label = 'Salinity [psul')
axs[0] .set_title('Salinity',loc='left')

HARBHAHHE

profile_lims = xlim_4

ds_sub = ds.where((ds.profile >=profile_lims[0]) & (ds.profile <=
wprofile_lims[1]), drop=True)

ax = axs[3]

pc = ax.pcolormesh(ds_sub.profile, ds_sub.depth,
~ds_sub['salinity'],rasterized=True)

ax.set_ylim(Y_LIMS)

fig.colorbar(pc, ax=ax, label = 'Salinity [psu]')
axs[0] .set_title('Salinity',loc='left"')

10

print('Zooming in along the glider deployment to visualize salinity spikes.
~Spikes manually identified are labeled with a red arrow.')

RERBRBRBRBHRRH

#Manually tdenttfy

axs[3] .scatter(301,200,90,marker="'v',color='r',zorder=2)
axs[3] .scatter(307,200,90,marker="'v',color="'r',zorder=2)
axs[3] .scatter(308,200,90,marker="'v',color="r',zorder=2)

Zooming in along the glider deployment to visualize salinity spikes. Spikes
manually identified are labeled with a red arrow.

[11]: <matplotlib.collections.PathCollection at 0x33b5a5090>

Salinity
0 m 0.10

200 - - 0.05

FY

Q

=]

=]

[=)

o
Salinity [psu]

600 - —0.05

-—0.10

T
g o2
5] o

w
w
o

Salinity [psu]

- 32.5

w
™
o

T
g 2
w o

w

w

o
Salinity [psu]

-32.5

w
™
o

2

Salinity [psu]

800

[12]: #### mask these indices
spiky_profiles = [301,307,308]
ds_no_spike = ds.copy()
ds_no_spike['salinity'] = ds.salinity.where(~ds.profile_index.
~isin(spiky_profiles))

spike_profiles = xr.DataArray([301,307,308], dims="bad_profiles") ##needed imn
~thermal lag correction

Now adding zoomed plot

xlim_1 = [0, int(NUM_PROFILES/4)]

xlim_2 = [int(NUM_PROFILES/4), int(NUM_PROFILES/4%2)]
x1lim_3 = [int(NUM_PROFILES/4%2), int(NUM_PROFILES/4x%3)]
xlim_4 [int (NUM_PROFILES/4%3), NUM_PROFILES]

Y_LIMS

[800, 0] #######modified

fig, axs = plt.subplots(4, 1, #height_ratios=[1, 4],
figsize = [12,9],
layout='constrained', sharex=False)

profile_lims = xlim_1

ds_sub = ds_no_spike.where((ds_no_spike.profile >=profile_lims[0]) &,
< (ds_no_spike.profile <= profile_lims[1]), drop=True)

ds_sub = ds_sub.isel(depth=range(200,800))

axs [0]

pc = ax.pcolormesh(ds_sub.profile, ds_sub.depth,
~ds_sub['salinity'],rasterized=True)

axs[0] .set_ylim(Y_LIMS)

ax

fig.colorbar(pc, ax=ax, label = 'Salinity [psu]')
axs[0] .set_title('Salinity',loc="'left')

HARBHREH

profile_lims = xlim_2

ds_sub = ds_no_spike.where((ds_no_spike.profile >=profile_lims[0]) &,
< (ds_no_spike.profile <= profile_lims[1]), drop=True)

ax = axs[1]

pc = ax.pcolormesh(ds_sub.profile, ds_sub.depth,
ods_sub['salinity'],rasterized=True)

ax.set_ylim(Y_LIMS)

fig.colorbar(pc, ax=ax, label = 'Salinity [psul')
axs[0] .set_title('Salinity',loc="'left"')

HHHHHAH
profile_lims = xlim_3

12

ds_sub = ds_no_spike.where((ds_no_spike.profile >=profile_lims[0]) &,
~(ds_no_spike.profile <= profile_lims[1]), drop=True)

ax = axs[2]

pc = ax.pcolormesh(ds_sub.profile, ds_sub.depth,
~ds_sub['salinity'],rasterized=True)

ax.set_ylim(Y_LIMS)

fig.colorbar(pc, ax=ax, label = 'Salinity [psul')
axs[0] .set_title('Salinity',loc="'left')

HARBHRBHH

profile_lims = xlim_4

ds_sub = ds_no_spike.where((ds_no_spike.profile >=profile_lims[0]) &,
~(ds_no_spike.profile <= profile_lims[1]), drop=True)

ax = axs[3]

pc = ax.pcolormesh(ds_sub.profile, ds_sub.depth,,
~ds_sub['salinity'],rasterized=True)

ax.set_ylim(Y_LIMS)

fig.colorbar(pc, ax=ax, label = 'Salinity [psu]')
axs[0] .set_title('Salinity',loc='left"')

print('Zooming in along the glider deployment to see if spikes were removed')
axs[3] .scatter(301,200,90,marker='v',color="'r',zorder=2)
axs[3] .scatter(307,200,90,marker="'v',color="'r',zorder=2)
axs[3] .scatter(308,200,90,marker="'v',color="'r',zorder=2)

HUH AR A

Zooming in along the glider deployment to see if spikes were removed

[12]: <matplotlib.collections.PathCollection at 0x33eal2210>

13

Salinity
0 m 0.10

o
o
v

200 A

400 - 0.00

Salinity [psu]

600 - —0.05

800 T T T T T T T T -—0.10

r34.0

-33.5

-33.0

Salinity [psu

- 32.5

- 32.0

T
g 2
w o

w
w
o

Salinity [psu]

-32.5

w
™~
o

T
g 2
wv o

w
w
o
Salinity [psu]

w
™
n

800

Mask the spikes in the time series too

[13]: ### now we need to mask the values in the timeseries too
mask = ts['profile_index'].isin(spiky_profiles)
ts = ts.where(-~mask,other=np.nan)

[14]: ####t## grid to make finding bad profiles easier
ts.to_netcdf (f'{filepath}/{deploy_name}_conductivityClean.nc')
Save a gridded wversion as well
outfile = make_gridfiles(f'{filepath}/{deploy_name}_conductivityClean.nc',y
of'{filepath}', deployfile, fnamesuffix='condfilter"')

Check to see if final plots look reasonable.

[15]: # Open the grid file
print('Salinity, temperature, conductivity and density shown, with conductivityy
woutliers removed from the salinity, conductivity and density fields:')

ds=xr.open_dataset (f'{filepath}/{deploy_name}_gridcondfilter.nc')
list(ds.keys())

RE-PLOTTING WITH THE COND FILTER!
fig, axs = plt.subplots(4, 1, figsize=(11, 10), sharey=True, sharex=True)

xlims = [0, NUM_PROFILES]
ylims = [MAX_DEPTH,0]

pc = axs[0] .pcolormesh(ds.profile, ds.depth, ds['salinity'],rasterized=True)
axs[0] .set_ylim(ylims)

axs[0] .set_x1lim(xlims)

fig.colorbar(pc, ax=axs[0], label = 'Salinity [psul')

axs[0] .set_title('Salinity cleaned',loc='left"')

pc = axs[1] .pcolormesh(ds.profile, ds.depth,,

~ds['temperature'] ,rasterized=True,cmap="'plasma')
fig.colorbar(pc, ax=axs[1], label = 'Temperature [$ 0$C]')
axs[1] .set_title('Temperature',loc='left')

from matplotlidb import colors as c

pc = azs[2].pcolormesh(ds.profile, ds.depth,
wds['conductivity '], rasterized=True, cmap=c.ListedColormap (['r']))

pc = axs[2] .pcolormesh(ds.profile, ds.depth,,
ods['conductivityClean'] ,rasterized=True,cmap="'cividis"')

fig.colorbar(pc, ax=axs[2], label = 'Conductivity [S/m]")

axs[2] .set_title('Conductivity cleaned',loc='left')

pc = azs[3].pcolormesh(ds.profile, ds.depth,
wds['oxygen_concentration'],rasterized=True, cmap="inferno')

fig.colorbar(pc, az=azs[3])

azs[3].set_title('Ocygen Concentration’,loc='left')

pc = axs[3] .pcolormesh(ds.profile, ds.depth,,

~ds['density'] ,,rasterized=True,cmap="'inferno')
fig.colorbar(pc, ax=axs[3], label = 'Density [kg/m$~3%]"')
axs[3] .set_title('Density',loc='left"')

fig.supylabel ('Depth [m]')

axs[0] .set_ylabel('Depth [m]');
axs[1] .set_ylabel('Depth [m]');
axs[2] .set_ylabel('Depth [m]');
axs[3] .set_ylabel('Depth [m]');

Salinity, temperature, conductivity and density shown, with conductivity
outliers removed from the salinity, conductivity and density fields:

15

0 Salinity cleaned

+34.0
E =
£ 335 z
=] 33.0 7
g £
o 3257
wn
32.0
T
0 Temperature
s
200 4 ti1z &
= w
E 400 10 £
£ ®
T 600 s T
fa] (=1
-
800 4 @
L a
T
Conductivity cleaned
) R 0
200 4 F38E
—_)
E
£ 400 4 36 2
£ =
T 600 g
8 3.4 3
800 S
|32
Density
F1030
z E
= 2
£ 1028 =
da- E?
g A7l
1026 5
o
| 1024

When plotting the fields shown above with the conductivity filter, we can see that the salinity and
conductivity fields now have “speckles” showing data removed. This filtering is applied to remove
values from the following fields:

e conductivity
o salinity (re-calculated)
o density (re-calculated)

The new field is called conductivityClean. The other fields mentioned were replaced.

3.3 2.2 Identifying questionable salinity profiles

Here, potentially suspicious salinity profiles are identified in order to prevent them from being used
in the thermal lag correction. While these questionable salinity profiles are not included in the
following steps, these profiles are not removed from the final corrected salinity product.

We identify any salinity profiles that are obviously unphysical, which is typically caused by some-
thing (usually biology) getting caught in the conductivity cell, and set all values within those

16

profiles to NaN. We use a simple criterion applied to the salinity data, binned by temperature,
with bin sizes based on the time series mean temperature profile. The criterion temporarily flags
any data points that are more than 4 standard deviations away from the overall mean for the
salinity time series within a given temperature bin, then recomputes the mean and standard devi-
ation, excluding the temporarily flagged values. Salinity values that still differ from the mean by
more than 4 standard deviations are flagged as ‘bad’. Finally, any profile where more than 10%
of the salinity values have been flagged as ‘bad’ using this criterion is removed. The number
of standard deviations used and the percent of flagged required to flag a profile as ‘bad’ can be
adjusted.

[62] : | ###### code with spike free timeseries

Determine time series mean temperature profile
fname = f'{filepath}/{deploy_namel}_conductivityClean.nc'
gridfname = f'{filepath}/{deploy_name}_gridcondfilter.nc'

ds=xr.open_dataset(gridfname) # Not loading delayed mode data - instead loading,
< from intermediate files saved.
dsO = xr.open_dataset(openfile) ##comparing to the original timeseries

#####A## find mean temperature profile of the timeseries
Tmean = ds['temperature'] .mean(dim="'time')
Tmean = Tmean.sortby(Tmean, ascending=True) .where(np.isfinite(Tmean), drop=True)

Identify the questionable salinity values

clean_profs = 0 #number of profiles to exclude from the start and end of they
»time series

flag _stdev = 4 #number of standard deviations to temporarily flag bad salinity,
<values

clean_stdev = 4 #number of standard deviations to flag bad salinity values,
wafter removing the temporary bad values

clean_cutoff = 0.1 #fraction of bad salinity values required to label a profile,
<as bad

dtbin = 10 #number of temperature bins

##u####trying modified code to exlude questionable profiles on the ends
sal = pgs.get_salinity_grid(dsO, Tmean, clean_profs, flag_stdev, clean_stdev,,
~clean_cutoff, dtbin)

sal.to_netcdf (f'{filepath}/SalinityGrid.nc')
bad_profiles = sal.profiles.where(sal.bad >= clean_cutoff, drop=True)

print('Profiles flagged as bad due to questionable salinity values:',,
~bad_profiles.values)

Profiles flagged as bad due to questionable salinity values: [0. 301. 307.
308.]

17

4 were flagged as bad and had their values set to NaN

[63]: caption = ('Binned salinity plotted as a function of temperature '
'(left) and vs. profile index (right), \n with the salinity profiles identified,,
o
'as bad due to questionable values and set to NaN shown in red and indicated by
o

'the red arrows at the top of the panel on the right:')

Function to plot the salinity field with the walues identified as bad
with xr.open_dataset(f'{filepath}/SalinityGrid.nc') as sal:
fig, ax = plt.subplots(l,2,figsize=(9,4),
constrained_layout=True)

sal.salinity.plot.line(ax=ax[0],
y='temperature',
color='r',
marker='.",
add_legend=False)
sal.salinityGood.plot.line(ax=ax[0],
y='temperature',
color="k"',
marker="'.",
add_legend=False)
ax[0] .set_ylabel('Temperature [$"0$C]')
ax[0] .set_xlabel('Binned salinity [psul')
ax[0] .grid(axis='both', color='0.5")

sal.salinity.plot.line(ax=ax[1],
x='profiles',
color='r"',
marker="'.",
add_legend=False)
sal.salinityGood.plot.line(ax=ax[1],
x='profiles',
color="k',
marker="'."',
add_legend=False)
ax[1] .set_ylabel('Binned salinity [psul')
ax[1] .set_xlabel('Profile index')
ax[1] .grid(axis='both', color='0.5")
x = bad_profiles
y = np.nanmax(sal.salinity.values) + np.zeros_like(bad_profiles)
ax[1] .scatter(x,y,30,marker='v',color="'k',zorder=1)
ax[1] .scatter(x,y,25,marker="'v',color="'r',zorder=2)

print (caption)

18

Binned salinity plotted as a function of temperature (left) and vs. profile
index (right),

with the salinity profiles identified as bad due to questionable values and set
to NaN shown in red and indicated by the red arrows at the top of the panel on

the right:
35 I T T
12 —] I 30
]
-—-_'_'-"-__-—-
= 25
Q'G' 10 — é
v 220
2 E
= =
g B 15 15
(=9 =l
£]
] c
] E
6 | | @ 10
5
4
0
T
o] 5 10 15 20 25 30 35 0 50 100 150 200 250 300
Binned salinity [psu] Profile index

[64]: # T-S diagram to select near-surface water density range to exclude

ts = xr.open_dataset (f'{filepath}/{deploy_name}_conductivityClean.nc"')
ts = ts.assign_coords(pind=ts.profile_index)

srate = stats.mode((np.diff(ts.time)).astype('timedeltab4[s]')) .mode
fig,ax=plt.subplots()

ax.plot(ts.salinity,ts.temperature, 'k.',markersize=2, label = 'Delayed-mode,,
~with conductivity outliers removed')

Now remove the bad profiles

idx = ~ts.profile_index.isin(bad_profiles)

ax.plot(ts.salinity[idx], ts.temperaturelidx], '.', markersize = 2, label =,
< 'Suspicious salinity profiles also removed')

#Create a density grid to contour plot isopycnals
S_range = np.linspace(int(np.min(ts.salinity)-0.5),

int (np.max(ts.salinity)+0.5), 1000)
T_range = np.linspace(int(np.min(ts.temperature)-1),

int (np.max(ts.temperature)+1), 1000)
S_grid, T_grid = np.meshgrid(S_range, T_range)
density_grid = seawater.eos80.dens0(S_grid, T_grid)

CS = ax.contour(S_range, T_range, density_grid,
np.arange (1014,

19

np.round(np.max(density_grid)),0.5),

colors='k', linewidths=0.5);
ax.clabel(CS, CS.levels, inline=True, fontsize=10)
ax.set_xlabel('Salinity [psul')
ax.set_ylabel('Temperature [$70o$C]"')
plt.zlim(28,35)
ax.grid()
ax.legend(prop={'size': 10})
print('Temperature vs. salinity diagram. ',
'Black contours give density in kg/m~3:')

Temperature vs. salinity diagram. Black contours give density in kg/m”3:

Temperature [°C]

- Delayed-mode with conductivity outliers removed
+ Suspicious salinity profiles also removed

2 !) ! ! I {

29 30 31 32
Salinity [psu]

[65]: display(Markdown('./docs/CTD_2_Sensor_lag LT.md'))

3.4 2.3 Sensor alignment correction

We now test application of a sensor alignment correction. In the literature this correction is often
used to align the temperature and conductivity in time, relative to the pressure. This correction
reduces the occurrence of salinity spikes near sharp gradients in T and S, and ensures calculations
are made using the same parcel of water for all variables. The misalignment between the sensors is

20

caused by: 1. The physical separation between sensors causing a transit time delay for water being
pumped through the CTD, and, 2. Different sensor response times

We follow the SeaBird Electronics Data Processing Manual (page 80) to determine if there is any
time lag between the temperature and conductivity sensors on our pumped CTD.

Sources: Sea-Bird Electronics, Inc. SEASOFT V2: SBE Data Processing
(https://misclab.umeoce.maine.edu/ftp/instruments/CTD%2037S1%20June%202011%20disk /website/pdf docur

[66] : | ####open cleaned timeseries file
ts_clean = xr.open_dataset(f'{filepath}/{deploy_name}_conductivityClean.nc')
fig,ax=plt.subplots(sharex=True)

ax.plot(ts_clean.time,2*ts_clean.conductivityClean, c='red',
~label="'2xConductivity')
ax.set_ylabel('Conductivity/Temperature',)

ax.plot(ts_clean.time,ts_clean.temperature ,c='blue',label='Temperature')
ax.legend()

print('Plot timeseries of temperature and conductivity to observe any time
woffset."')

Plot timeseries of temperature and conductivity to observe any time offset.

—— 2xConductivity
14 —— Temperature

=
Fd
I

=
=
I

[#2]
I

1l Hl|l|,i| ll {
I ll“'““” |||H|||H||H|HM|

| ||_'|. |
4 [| | |

Conductivity/Temperature

&
I

T T T T T T T T
2020-06-2020-06-920-06-2020-06-2B20-06-2620-06-2020-06-2820-07-01

21

[67]:

There is no significant lag between the temperature (T) and conductivity (C) signals.
Examination of individual casts revealed no measurable offset between T and C. No visible lag
from a 2 Hz sensor is reasonable. Furthermore, the T and C sensors on the Glider Pumped
CTD (CPCTD) are spatially co-located, ebsuring both sensors sample the same parcel of water
simultaneously. Therefore, no sensor offset correction was applied to the data.

display(Markdown('./docs/CTD_2_Thermal_lag LineP.md'))

3.5 2.4 Thermal lag correction

The thermal lag effect is caused by the thermal inertia of the conductivity cell affecting the tem-
perature of the water as it passes through the cell. To determine the thermal lag correction, the
temperature inside the conductivity cell is estimated, then salinity is recalculated using the esti-
mated temperature and the measured conductivity. To estimate the temperature, a recursive filter
is applied to the temperature field with parameters (the amplitude of the error), and (the time
constant for the thermal lag). Two methods for this are mentioned below.

Sea-Bird GPCTDs are pumped with a constant flow rate. As such, we expect the thermal lag to
be approximately constant over the full mission, and it is sufficient to find a single value of and
for the entire mission. It is ideal to use profile pairs from regions with large temperature gradients,
but small conductivity gradients, when comparing up- and down-casts.

Janzen and Creed (2011) determined a cell thermal mass correction for the GPCTD using data
from a prototype CTD that sampled twice as rapidly as the GPCTD nominally samples, with a
pumped flow rate of 10 ml/s. They found = 0.06 and = 10s. These values are considered
when retrieving o and 7 to see how much the results differ.

In this study, we consistently find 10 s, in agreement with Janzen and Creed (2011), and therefore
determine as the free parameter that minimizes the RMSD while holding = 10 s constant.

This mission on the Line P occurred in a low energy environment of the shelf, so near-surface
differences between a downcast and the subsequent upcast are unlikely to be caused by spatiotem-
poral variability. As such, we do not exclude segments of each profile in the upper water column
from the minimization routine.

Considerations for using Janzen and Creed values: Prior processing used Janzen
and Creed (2011) values o« and 7 for the thermal lag. For each mission, the thermal
lag parameters were directly estimated. The steps are outlined below, but can be found
in much greater detail here: https://cproof.uvic.ca/gliderdata/deployments/reports/C-
PROOF_SBE_ CTDProcessingReport_ v0.2.pdf

o It was confirmed that the directly estimated value of 7 was within $£+$10s of the Janzen and
Creed (2011) value of 10s

e The improvement with the directly estimated, as well as Janzen and Creed, parameters was
quantified.

e The thermal lag correction was applied with the parameters that resulted in the greater
improvement, and did not result in an over-correction.

22

e If a given sensor had a directly estimated value of 7 that is significantly higher or lower than
10s, investigate further

Thermal lag parameters typically vary slightly among individual GPCTD sensors, more so than
alignment correction constants. Once an optimal is identified for a particular sensor,
subsequent missions are tested with those constants, and the correction is applied only if
it improves the profile agreement. If not, the parameters are re-evaluated.

With this method, the recursive filter seeks to minimize the root-mean squared difference (RMSD),
which is calculated as the square root of the sum of the squared areas between pairs of salinity
profiles (binned by temperature), normalized by the number of pairs of profiles. The values of and

that minimize the area between pairs of profiles (each dive and subsequent climb along the glider
path) were determined using a brute force minimization scheme. This method also uses a subset of
the remaining data, consisting of 100 pairs of profiles equally spaced in time, to determine the
correction.

Updated thermal lag correction procedure: Same to the above, this is based on Morison et
al’s (2011) second method which derives a modified temperature that is the “best guess” for what
the temperature is in the conductivity cell based on the temperature observed by the thermistor.
The temperature is corrected using 1filter which is just a recursive filter:

Tr(n)=—=bTp(n—1)+al(n) —al(n—1)

where
4f, ot
a=—"—
1+4f,7
and 5
b=1—"
o

7 can be thought of as the time constant of the thermal lag (in seconds) and « as its strength.
Following Gaurau et al, f,, is the sampling frequency. The cell temperature is then”

T.(n) =T(n) —Tr(n)
and can be used to calculate salinity with the measured conductivity and pressure.

3.5.1 2.4.1 Pre-processing steps:

We exlude profiles from the correction for which the area between subsequent downcasts is more
than one standard deviation from the mission mean. This ensures that no data crossing fronts or
intrusions is included in the correction, in line with the key assumption that a downcast and the
subsequent upcast be identical.

Furthermore, we impose a cutoff for the area between pairs of profiles that will be included in the
subset used to estimate the parameters. Any pair of profiles whose area is more than 3 standard
deviations away from the mean will be excluded from the determination of the RMSD. This ensures
that a small number of anomalous profiles do not bias the results.

23

During this step, the suspicious salinity profiles identified earlier are excluded as well.

[68]: # Set up our constants

fn = 0.5%fs #frequency for Sea-Bird GPCTD

density_cutoff = 1021 #thts is not excluding the top of profiles (excludey
weverything less dense than this from the minimization)

num_profs = 100 #number of profiles to include in the subset of data # This %5,
wnot used for the correction, but is used in the q/c steps

clean_profs_start = 50 #number of profiles to exclude from the start

clean_profs_end = O #number of profiles to exclude from the end

dn_stdev = 1 #how many standard deviations from the mean the area between
~downcasts can be

fname = f'{filepath}/{deploy_name}_conductivityClean.nc'

Load time series

print(f'Loading filename {fname}')

ts = xr.load_dataset (fname) #ds1. copy (deep=True)

ts = ts.assign_coords(pind=ts.profile_index) #add a profile index coordinate
tot_profs = int(np.nanmax(ts.profile_index.values))

print('Total number of profiles:', tot_profs)

Overwrite conductivity in our working zarray with the clean, aligned,
wconductivity field
ts['conductivity'] = ts.conductivityClean

Loading filename deployments/dfo-walle652/dfo-walle652-20200616//dfo-
walle652-20200616_conductivityClean.nc
Total number of profiles: 330

[69]: dsO = xr.open_dataset(f'{filepath}/{deploy_name}_gridcondfilter.nc')
fig, ax = plt.subplots()
pc=ax.pcolormesh(ds0O.profile, -dsO.depth, dsO['salinity'],rasterized=True)
fig.colorbar(pc,label="'Salinity [psul')
ax.set_title('Salinity up/down asymmetry')
ax.set_x1im(200,250)
ax.set_ylim(-300,0)

print ('There is a visible asymmetry in the up and down casts of succesive
oprofiles, causing stipes to appear in the raw data')

There is a visible asymmetry in the up and down casts of succesive profiles,
causing stipes to appear in the raw data

24

Salinity up/down asymmetry

0
_50 34.0
—100 33.5
=
(7]
=
—150 33.0 &
£
T
3]
=200 32.5
—250
32.0
—300
200 210 220 230 240 250

We exlude the first 50 profiles, which were primarily collected in the highly energetic environ-
ment on the shelf near Tofino. We use a subet of the remianing data, consisting of 100 pairs of
profiles equally spaced in time to determine the corrected.

[70]: print('Calculating profile pairs')
ts_sub, profile_bins, profile_bins_all, direction = pgs.profile_pairs(
ts, clean_profs_start, clean_profs_end, num_profs, bad_profiles
) ##need to account for the NaN profiles added when correcting biofouling

Identify boolean index for application of density cutoff
density_bool = ts_sub.density>=density_cutoff

Calculating profile pairs

Restricting profiles > 1 standard deviation greater than the mean space between profiles

[71]: #Determine the area between subsequent downcasts to restrict profiles included,
~in correction
print(f'Restricting profiles')
dn_area, area_bad = pgs.TS_preprocess(
density_bool, dn_stdev,
profile_bins, profile_bins_all,

25

direction, ts_sub)
print('Max and min area between downcasts = ', np.nanmax(dn_area), np.
-nanmin(dn_area))

ts_bad = ts_sub.where(
ts_sub.profile_index.isin(
profile_bins_all[area_bad]l),
drop=True)
prof_list = ts_bad.profile_index
print('List of profiles to exclude:', np.unique(prof_list.values))

Restricting profiles
Max and min area between downcasts = 3.528591935584152 0.0011428285848211657
List of profiles to exclude: [89. 90. 126. 127. 197. 198.]

[72]: ts_sub['profiles_to_exclude'] = ts_sub.profile_index.isin(prof_list.values)

[73]:|# Plot the profiles that were kept for the comparison!!
print('Red indicates profile pairs that were identified in this process, where
~the area between \nprofile pairs was considered to be too large, and so are
onot included in the thermal lag correction. \nWhite bands indicate salinity,
wprofiles removed during step 2.2.')

subdata = ts_sub.where(ts_sub.profiles_to_exclude == True) #profile_index.
wtsin(prof_list.values)#(profile_bins)

fig, ax = plt.subplots(l,1, figsize=(9, 3), constrained_layout=True)
ax.scatter(ts_sub.profile_index, ts_sub.pressure, marker = '.', color='black',,
t—>S=2,
rasterized=True, label='Profiles with suspicious salinity and
~conductivity removed')

ax.set_ylim([MAX_DEPTH, 0])
ax.set_x1im([0,np.nanmax(ts_sub.profile_index)])

ax.scatter(subdata.profile_index, subdata.pressure,
color='red', marker = '.', s=2, rasterized=True, label = 'Profiles,
swith large SD')

ax.legend(fontsize='small', loc='lower left');

Red indicates profile pairs that were identified in this process, where the area
between

profile pairs was considered to be too large, and so are not included in the
thermal lag correction.

White bands indicate salinity profiles removed during step 2.2.

26

200 A

400 A

600

800 A
Profiles with suspicious salinity and conductivity removed

Profiles with large 5D

T T T
0 50 100 150 200 250 300

[74]: # SAVING INTERMEDIATE FILE TO NETCDF
print ("Saving thermal lag preprocessing files to netcdf")
ts_sub.to_netcdf (f'{filepath}/{deploy_namel}_goodprofiles.nc')
Save a gridded version as well
outfile = make_gridfiles(f'{filepath}/{deploy_name}_goodprofiles.nc',
~f'{filepath}', deployfile, fnamesuffix='goodprofiles')

3.5.2 2.4.2 Defining the range to calculate o« and 7:

From examining the asymmetry in up-down profiles, we manually choose a range to apply the
thermal lag correction to. It is ideal to pick areas with high temperature gradients in the water
column, but generally low salinity gradients.

[75]: fname = f'{filepath}/{deploy_name}_goodprofiles.nc'
gridfname= f'{filepath}/{deploy_namel}_gridgoodprofiles.nc'

[76]: # Select a subset of profiles to calculate tau and alpha
profile_lims = [200,230]
print(f'Using profile limits {profile_lims} for tau and alpha calculation')

Using profile limits [200, 230] for tau and alpha calculation

[77]: ds=xr.open_dataset(f'{filepath}/{deploy_name}_gridgoodprofiles.nc')

tbins = ds.temperature.mean(dim='time', skipna=True)
tbins = np.sort(tbins[::6])

tbins = tbins[np.isfinite(tbins)]

print (tbins)

depbins = ds.depthl[: :6]

[78]: # Switches back to the time series....
switching ds to ts
with xr.load_dataset(fname) as dsO:

27

[79]:

[80]:

USING PROFILE_LIMS DECIDED ABOVE!
print (f'Loading {fname}')
inds=np.arange(profile_lims[0], profile_lims[1])

indbins = np.arange(inds[0]-0.5, inds[-1]+0.5, 1.0)

ts = dsO.where((dsO.profile_index >= inds[0]) & (dsO.profile_index <=,
~inds[-1]), drop=False)

ts = ts.where(ts.depth >=200) ######### modified... just look deeper in the,
<water column

Once again, make sure to use density cutoff

ts = ts.where((ts.density > density_cutoff), drop=True)
Also, profiles to exzclude:

ts = ts.where(ts.profiles_to_exclude == False, drop=True)

sal = ts.salinity

3.5.3 Comparing the error measurements between estimated alpha & tau and Janzen
and Creed values:

Below shows the subset of profiles, limited to 200 m depth, without any thermal lag correction,
and using literature values (Janzen and Creed 2011). The Janzen and Creed « and 7 values visibly
reduce the error in the water column, but better results can be retrieved by calculating our own.

First we bin our salinity data into temperature bins of width 0.1 and profile index. We sum
the salinities in each bin and divide by the number of samples in each bin. Error is the
difference in the mean salinity for successive profiles, normlaized by salinity variance for
each temperature bin.

Comparison — correcting the salinity with the janzen and creed values, andy
wcomparing the error before and after

dt = ts.time.diff(dim='time') .mean(dim='time"').astype('float') / 1e9

fn = 1.0 / dt

alpha = 0.06

tau = 10.0

sal = pgs.correct_sal(ts, fn, alpha, tau) ###applied lag correction formula to,
~"good" salinity wvalues

ssO0, err0O, totalerr = pgs.get_error(ts, ts.salinity, tbins, indbins) ### "good",
~data with no lag correction
ss, err, totalerr = pgs.get_error(ts, sal, tbins, indbins)

sp0 = np.nanmean(ssO, axis=1)

Y_LIMS = [500,0]

28

fig, ax = plt.subplots(l, 2, sharex=True, sharey=True,
~layout='constrained',figsize = [7,3])

pc = ax[0] .pcolormesh(indbins[:-1], depbins[:len(tbins)-1][::-1], ssO-spO[:, np.
wnewaxis], cmap='RdBu_r', vmin=-0.1, vmax=0.1) #, wmin=3.34, vmaz=3.52)

ax[0] .set_ylim(Y_LIMS)

ax[0] .set_ylabel('ISOTHERM DEPTH [m]')

ax[0] .set_xlabel ('PROFILE')

ax[0] .set_title('No correction')

pc = ax[1] .pcolormesh(indbins[:-1], depbins[:len(tbins)-1][::-1], ss-spO[:, np.
onewaxis], cmap='RdBu_r', vmin=-0.1, vmax=0.1) #, wmin=3.34, vmaz=3.52)

ax[1] .set_title(f'$\\alpha = {alphal}, \\tau = {tau}$')

fig.colorbar(pc, ax=ax, label='S[T(z), bin] - mean(S) [T(z)]")

[80]: <matplotlib.colorbar.Colorbar at 0x37fcbe0d0>

No correction a=0.06, T=10.0
0 0.100
0.075 =
"= 100 - =
E - 0.050 E
T wn
0.025 &
E 200 - . @
2 = 0.000 E
- p—
2 300 7 = —0.025 £
':I_: £
| | —0.050 =
A 400 - o 1 P =
|_ I_ -0.075 &
500 T T T T T T T T T T T T _0.100
200 205 210 215 220 225 200 205 210 215 220 225

PROFILE

As seen above, the up/down asymmetry was slightly improved by applying the Janzen and Creed
constants.
3.5.4 Finding alpha and tau values with lowerest error estimates:

We will keep 7 as 10, since the Janzen and Creed constants improved the data. We will try to find
« that minimizes error.

[81]: | ## scan:
alphas = np.arange(-0.1, 0.2, 0.002)
tau = 10

errors = np.zeros((len(alphas)))
for ny, alpha in enumerate(alphas):

29

sal = pgs.correct_sal(ts, fn, alpha, tau)
ss, err, totalerr = pgs.get_error(ts, sal, tbins, indbins)
errors[ny] = np.nansum(np.nanmean(err, axis=1))

[82]: fig,axs=plt.subplots()

axs.plot(alphas, errors)
axs.set_xlabel(r'α')
axs.set_ylabel('Error')
axs.set_title(r'Error when τ = 10')

min_idx = np.unravel_index(np.argmin(errors), errors.shape)
print('The minimim alpha is ' + str(alphas[min_idx]))

The minimim alpha is 0.09200000000000016

Error when t = 10

50 4

40

30

Error

20

10

T T T T T T T
—0.10 —0.05 0.00 0.05 0.10 0.15 0.20
o

There is a global minimum where the error is minimized. We will use that « to reduce the asym-
metry.

[83]: dt = ts.time.diff(dim='time') .mean(dim='time').astype('float') / 1e9
fn = 1.0 / dt

30

alpha = 0.092
tau = 10

print ('*kkxkk!')
print (f'Applying alpha = {alpha} and tau = {tau}')
print ('*kkkkk!')

alpha2 = 0.06
tau2 = 10
HULHAR A

with xr.load_dataset(fname) as tsO:
inds = np.arange(0, NUM_PROFILES)

indbins = np.arange(inds[0]-0.5, inds[-1]+0.5, 1.0)

ts = tsO.where((tsO.profile_index >= inds[0]) & (tsO.profile_index <=
~inds[-1]), drop=False)

Once again, make sure to use density cutoff? maybe?

ts = ts.where((ts.density > density_cutoff), drop=True)

Also, profiles to exzclude:

ts = ts.where(ts.profiles_to_exclude == False, drop=True)

sal = pgs.correct_sal(ts, fn, alpha, tau)

ss0, errO, totalerr = pgs.get_error(ts, ts.salinity, tbins, indbins)
ss, err, totalerr = pgs.get_error(ts, sal, tbins, indbins)

sal2 = pgs.correct_sal(ts, fn, alpha2, tau2)
ss2, err2, totalerr2 = pgs.get_error(ts, sal2, tbins, indbins)

Y_LIMS = [300,0]

fig, ax = plt.subplots(l, 2, sharex=True, sharey=True, layout='constrained',
~figsize = [8,3])

sp0 = np.nanmean(ssO, axis=1)

pc = ax[0] .pcolormesh(indbins[:-1], depbins[:len(tbins)-1]1[::-1], ssO-spO[:, np.
onewaxis], cmap='RdBu_r', vmin=-0.1, vmax=0.1) #, wmin=3.34, vmaz=3.52)

ax[1] .set_ylim([200, 0])

ax[0] .set_ylabel('ISOTHERM DEPTH [m]')

ax[0] .set_xlabel ('PROFILE')

ax[0] .set_title('No correction')

ax[0] .set_ylim(Y_LIMS)

pc = ax[1] .pcolormesh(indbins[:-1], depbins[:len(tbins)-1]1[::-1], ss-spO[:, np.
—~newaxis], cmap='RdBu_r', vmin=-0.1, vmax=0.1) #, wmin=3.34, vmaz=3.52)

31

ax[1] .set_title(f'$\\alpha = {alpha}, \\tau = {tau}$')
fig.colorbar(pc, ax=ax, label='S[T(z), bin] - mean(S) [T(z)]")

>k 3k 5k 5k Xk %

Applying alpha = 0.092 and tau = 10
KKk ok ok

[83]: <matplotlib.colorbar.Colorbar at 0x37fb59d10>

No correction a=0.092, =10
0 T N 3 0.100
Hl III
0.075 =
T 507] =
= 0.050 =
£ 100 i n
£ 0.025 §
: :
150 e 0.000
Z -
-0.025 £
E 200 - . o
9 —0.050
= 250 . E
-0.075 7
300 - . —-0.100

- T T
0 50 100 150 200 250 300 O 50 100 150 200 250 300
PROFILE

Zoom into three areas to observe change

[84]: def zoom_in_thermal_chg(min_ind,max_ind,fname,density_cutoff):
with xr.load_dataset(fname) as tsO:
inds = np.arange(min_ind, max_ind)

indbins = np.arange(inds[0]-0.5, inds[-1]+0.5, 1.0)

ts = ts0.where((tsO.profile_index >= inds[0]) & (tsO.profile_index <=,
~inds[-1]), drop=False)

Once again, make sure to use density cutoff? maybe?

ts = ts.where((ts.density > density_cutoff), drop=True)

Also, profiles to exzclude:

ts = ts.where(ts.profiles_to_exclude == False, drop=True)

sal = pgs.correct_sal(ts, fn, alpha, tau)

ss0, errO, totalerr = pgs.get_error(ts, ts.salinity, tbins, indbins)
ss, err, totalerr = pgs.get_error(ts, sal, tbins, indbins)

sal2 = pgs.correct_sal(ts, fn, alpha2, tau2)
ss2, err2, totalerr2 = pgs.get_error(ts, sal2, tbins, indbins)

Y_LIMS = [500,0]

32

fig, ax = plt.subplots(l, 2, sharex=True, sharey=True,
~layout='constrained', figsize = [8,3])

sp0 = np.nanmean(ssO, axis=1)

pc = ax[0] .pcolormesh(indbins[:-1], depbins[:len(tbins)-1][::-1], ssO-spO[:
<, np.newaxis], cmap='RdBu_r', vmin=-0.1, vmax=0.1) #, vmin=3.34, vmaz=3.52)

ax[1] .set_ylim([200, 0])

ax[0] .set_ylabel (' ISOTHERM DEPTH [m]')

ax[0] .set_xlabel ('PROFILE')

ax[0] .set_title('No correction')

ax[0] .set_ylim(Y_LIMS)

pc = ax[1] .pcolormesh(indbins[:-1], depbins[:len(tbins)-1][::-1], ss-spO[:,,
onp.newaxis], cmap='RdBu_r', vmin=-0.1, vmax=0.1) #, wmin=3.34, vmaz=3.52)

ax[1] .set_title(f'$\\alpha = {alpha}, \\tau = {tau}$')

fig.colorbar(pc, ax=ax, label='S[T(z), bin] - mean(S) [T(z)]")

[85]: zoom_in_thermal_chg(140,150,fname,density_cutoff)
zoom_in_thermal_chg(200,250,fname,density_cutoff)
zoom_in_thermal_chg(315,330,fname,density_cutoff)

MNo correction a=0.092, =10
0 0.100

"= 100 1 B =
E- 0.050 ;
T u

0.025 £
E 2004 B g

0.000 E
Z -
f5 3007 iy —0.025
E L

—0.050
@ 400 1 N

-0.075 R

500 T T T T T T T T —0.100
140 142 144 146 148 140 142 144 146 148
PROFILE

33

No correction a=0.002, t=10

0 = - N = — - 0.100
HT S 5= LEES T iy, e b=
= 0.075 3
= 100 =t
E 0.050 =
E u

0.025 £
3 200 g

0.000
Z -
T 300 —-0.025 €
':I_: o

—0.050 =
8 400 =

—0.075 7

500 —0.100
PROFILE
No correction a=0.092, T=10
0 0.100
- T =————— T —

0.075 =
= 100 - . =
= = - 0.050 %
E —s— = F—— =
E 500 — 0.025 §
Q — r- — 0.000 £
=) .
X 300 - 1 —0.025 €
':I_: 0

—0.050 73
8 400 | . -

—0.075 &

500 —0.100

T T T T T T T T T T T T
315.0 317.5 320.0 322.5 325.0 327.5 315.0 317.5 320.0 322.5 325.0 3275
PROFILE

The corrections seem to reduce asymmetry everywhere in the time series. We are using this « as
the constant for GPCTD 9404

Save corrected data

[86]: print('*x**x')
print(f'Saving with alpha = {alpha} and tau = {tau} applied')
print ('kkkkk!')

We're going to apply the changes to the un—filtered data. That step happened,
~last here:

fname = f'{filepath}/{deploy_name}_conductivityClean.nc'
gridfname = f'{deploy_name}_gridcondfilter.nc'

>k 3k %k %k k

Saving with alpha = 0.092 and tau = 10 applied
kKoK ok ok

34

[87]: ts.close()
ds.close()

[88]: with xr.open_dataset(fname) as ts:

display(ts)

ts['conductivity'] = ts.conductivityClean
s, t, d = pgs.correct_sal_temp_dens(ts, fn, alpha, tau)

ts['salinity_corrected'] = ('time', s)

ts['temperature_adjusted'] = ('time', t)

ts['density_adjusted'] = ('time', d)

fixz attridbutes

ts.to_netcdf (f'{filepath}/{deploy_name}_thermal_lag.nc')

display(ts)

outfile = make_gridfiles(f'{filepath}/{deploy_name}_thermal_lag.nc',
f'{filepath}',
deployfile, fnamesuffix='_thermal_lag')

<xarray.Dataset> Size: 127MB
Dimensions:
Coordinates:
* time
latitude
longitude
depth
Data variables: (12/24)
heading
pitch
roll
waypoint_latitude
waypoint_longitude
conductivity

potential_density
density
potential_temperature
profile_index
profile_direction
conductivityClean
Attributes: (12/62)
Conventions:
Metadata_Conventions:
acknowledgement:
cdm_data_type:
comment:
contributor_name:

summary:

(time:

(time)
(time)
(time)
(time)

(time)
(time)
(time)
(time)
(time)
(time)

(time)

(time)
(time)
(time)
(time)
(time)

CF-1.6

567914)

datetime64[ns] 5MB 2020-06-16T14:21:08 ..

float64
float64
float64

float64
float64
float64
float64
float64
float64

float64
float64
float64
float64
float64
float64

5MB ..
5MB ..
5MB ..

BMB ..
5MB ..
5MB ..
5MB ..
5MB ..
5MB ..

5MB ..
5MB ..
5MB ..
5MB ..
B5MB ..
5MB ..

CF-1.6, Unidata Dataset Discovery v1.0
Funding from Fisheries and Oceans Canada, Cana..

Trajec

tory

Line P deployment

James Pegg, Tetjana Ross,

Jody Klymak, Hayley..

Glider deployed as part of the C-PROOF glider ..

35

time_coverage_end: 2020-07-01T16:00:39.000000000

time_coverage_start: 2020-06-16T14:21:08.000000000
title: dfo-walle652-20200616T1421
transmission_system: IRIDIUM
wmo_id: 4800996
<xarray.Dataset> Size: 141MB
Dimensions: (time: 567914)
Coordinates:
* time (time) datetime64[ns] 5MB 2020-06-16T14:21:08 ..
latitude (time) float64 5MB ..
longitude (time) float64 5MB ..
depth (time) float64 5MB ..
Data variables: (12/27)
heading (time) float64 5MB ..
pitch (time) float64 5MB ..
roll (time) float64 5MB ..
waypoint_latitude (time) float64 5MB ..
waypoint_longitude (time) float64 5MB ..
conductivity (time) float64 5MB nan nan nan nan .. nan nan nan
profile_index (time) float64 5MB ..
profile_direction (time) float64 5MB ..
conductivityClean (time) float64 5MB ..
salinity_corrected (time) float64 5MB nan nan nan nan .. nan nan nan
temperature_adjusted (time) float64 5MB nan nan nan nan .. nan nan nan

density_adjusted
Attributes: (12/62)
Conventions:

Metadata_Conventions:

(time) float64 5MB nan nan nan nan .. nan nan nan

CF-1.6
CF-1.6, Unidata Dataset Discovery v1.0

acknowledgement: Funding from Fisheries and Oceans Canada, Cana..
cdm_data_type: Trajectory
comment : Line P deployment

contributor_name:

summary:
time_coverage_end:
time_coverage_start:
title:
transmission_system:
wmo_id:

James Pegg, Tetjana Ross, Jody Klymak, Hayley..

Glider deployed as part of the C-PROOF glider ..
2020-07-01T16:00:39.000000000
2020-06-16T14:21:08.000000000
dfo-walle652-20200616T1421
IRIDIUM

4800996

3.5.5 Before and after plots of the thermal lag correction

The following plots show the adjusted salinity, temperature, and density, respectively. The insets,
right, correspond to the red box, delineating the profile range used to calculate the alpha and tau
values. Further, unadjusted salinity, temperature, and density outliers, identified during the pre-
processing steps, which were removed for the tau and alpha calculation to not skew results, are

36

[89]:

[90]:

[91]:

shaded in a lighter colour.

These fields, adjusted and re-calculated using the new alpha and tau values, are saved in the output
file as fields salinity__adjusted, temperature__adjusted and density__adjusted. The original
delayed-mode, uncorrected fields are saved as salinity, temperature and density.

Open the ts file
ts=xr.load_dataset (f'{filepath}/{deploy_name}_thermal_lag.nc')

Open the grid file
ds=xr.open_dataset (f'{filepath}/{deploy_name}_grid_thermal_lag.nc')

dsbad

xr.open_dataset (f'{filepath}/{deploy_name}_ gridgoodprofiles.nc')

idr = dsbad.where(dsbad.profiles_to_exclude ==True)
dsbad.salinity[idz] = np.nan

Also testing dropping the bad profiles
dsbad = dsbad.where(dsbad.profiles_to_exclude==False, drop=False)

Similarly, applying a density cutoff
dsbad = dsbad.where(dsbad.density>=density_cutoff, drop = False)
print(f'Density cutoff: {density_cutoffl}')

Trying to make a mask of the good and bad data used to derive correction
wparameters from
ds['salinity _mask'] = ds.salinity.isin(dsbad.salinity)

Density cutoff: 1021

RE-PLOTTING WITH THE COND FILTER!
Jmatplotlib ipympl

fig, axs = plt.subplots(2, 2, figsize=(12, 8), sharey=True, width_ratios=[2.
~5,2], squeeze=True)

Limits

xlims = [0, NUM_PROFILES]

ylims=[300,0] #[MAX_DEPTH,O0]

sal lims = [31,34]

cmap="'jet'

profile_lims = [200,230] ###defined earlier

Rectangle showing area used to get alpha and tau
from matplotlib.patches import Rectangle

37

pc = axs[0,0] .pcolormesh(ds.profile, ds.depth,,
~ds['salinity'],cmap=cmap,rasterized=True,vmin=sal_lims[0], vmax=sal_lims[1],,
~alpha = 0.3)

pc = axs[0,0] .pcolormesh(dsbad.profile, dsbad.depth,
~dsbad['salinity'] ,rasterized=True,vmin=sal_lims[0],
~vmax=sal_lims[1],cmap=cmap)

axs[0,0] .set_ylim(ylims)

axs[0,0] .set_xlim(xlims)

fig.colorbar(pc, azx=azs[0,0])

axs[0,0] .set_ylabel('Depth [m]')

axs[0,0] .set_title('Salinity, with conductivity, profile and density outliers
oremoved',loc='left')

axs[0,0] .add_patch(Rectangle(xy=(profile_lims[0], ylims[1]), width =,
wprofile_lims[1]-profile_1ims[0], height = ylims[0]-ylims[1],

edgecolor = 'r', facecolor='none', linewidth=1));

pc = axs[1,0] .pcolormesh(ds.profile, ds.depth,,
~ds['salinity_corrected'] ,rasterized=True,vmin=sal_lims[0],
ovmax=sal_lims[1],cmap=cmap)

axs[1,0] .set_xlim(xlims)

fig.colorbar(pc, az=azs[1,0])

axs[1,0] .set_ylabel('Depth [m]')

axs[1,0] .set_title('Salinity corrected for thermal lag: tau = 10, alpha = O.
092',loc="left"')

axs[1,0] .add_patch(Rectangle(xy=(profile_lims[0], ylims[1]), width =,
oprofile_lims[1]-profile_1ims[0], height = ylims[0]-ylims[1],

edgecolor = 'r', facecolor='none', linewidth=1));

Subplots from correction area

xlims = profile_lims

Subplot from correction area

pc = axs[0,1] .pcolormesh(ds.profile, ds.depth,,
~ds['salinity'] ,rasterized=True,vmin=sal_lims[0], vmax=sal_lims[1], alpha = O.
-3, cmap=cmap)

pc = axs[0,1] .pcolormesh(dsbad.profile, dsbad.depth,
~dsbad['salinity'] ,rasterized=True,vmin=sal_lims[0],
~vmax=sal_lims[1],cmap=cmap)

axs[0,1] .set_xlim(xlims)

fig.colorbar(pc, ax=axs[0,1], label = 'Salinity [psul')

pc = axs[1,1] .pcolormesh(ds.profile, ds.depth,,
ods['salinity_corrected'] ,rasterized=True,vmin=sal_lims[0],
~vmax=sal_lims[1],cmap=cmap)

axs[1,1] .set_xlim(xlims)

38

fig.colorbar(pc, ax=axs[1,1], label = 'Salinity [psul')

print('Salinity before (top) and after adjustment (bottom)')

print('Profiles and data points that were ignored for thermal lag correction
sare shaded in the top plot.')

print('The profile range used to determine the thermal lag correction is shown,
—on the right:')

Salinity before (top) and after adjustment (bottom)

Profiles and data points that were ignored for thermal lag correction are shaded
in the top plot.

The profile range used to determine the thermal lag correction is shown on the
right:

Salinity, with conductivity, profile and density outliers removed
0-

34.0

50 4

100 4 ‘
150 4

w w
w w
o wn

Depth [m]
8
v
Salinity [psu]

200+

w
N
o

2501

w
=
n

w
Iy
=}

300 +
[} 50 100 150 200 250 300 2

00 205 210 215 220 225 23
Salinity corrected for thermal lag: tau = 10, alpha = 0.092
00 205 210 215 220 225 23

0

50 4

w
w
n

*

100 +

w
w
o

150 4

Depth [m]
w
]
w
Salinity [psu]

2004

w
~
=}

2501

w
=
n

w
=
=]

2 0

[92]: | # RE-PLOTTING WITH THE COND FILTER!
fig, axs = plt.subplots(2, 2, figsize=(12, 8), sharey=True, width_ratios=[2.
~5,2], squeeze=True)

Limits

xlims = [0, NUM_PROFILES]
y1lims=[300,0]

t_lims = [3,15]

39

cmap = 'inferno'

Rectangle showing area used to get alpha and tau

from matplotlib.patches import Rectangle

print (f'Drawing rectangle centered at: {profile_lims[0], ylims[O]J}')
rect = #, linestyle='dotted'

pc = axs[0,0] .pcolormesh(ds.profile, ds.depth,
~ds['temperature'] ,rasterized=True,vmin=t_lims[0], vmax=t_lims[1], alpha = O.
-3, cmap=cmap)

pc = axs[0,0] .pcolormesh(dsbad.profile, dsbad.depth,
~dsbad['temperature'] ,rasterized=True, cmap = cmap,vmin=t_lims[0],
wvmax=t_lims[1])

axs[0,0] .set_ylim(ylims)

axs[0,0] .set_xlim(xlims)

fig.colorbar(pc, az=azs[0,0])

axs[0,0] .set_ylabel('Depth [m]"')

axs[0,0] .set_title('Temperature, with profile and density outliers,
wremoved',loc='left")

axs[0,0] .add_patch(Rectangle(xy=(profile_lims[0], ylims[1]), width =,
owprofile_lims[1]-profile_lims[0], height = ylims[0]-ylims[1],

edgecolor = 'r', facecolor='none', linewidth=1))

pc = axs[1,0] .pcolormesh(ds.profile, ds.depth,,
~ds['temperature_adjusted'],rasterized=True,vmin=t_lims[0], vmax=t_lims[1],
<cmap=cmap)

axs[1,0] .set_xlim(xlims)

fig.colorbar(pc, az=azxs[1,0])

axs[1,0] .set_ylabel('Depth [m]"')

axs[1,0] .set_title('Temperature adjusted during thermal lag,
«correction',loc="'left"')

axs[1,0] .add_patch(Rectangle(xy=(profile_lims[0], ylims[1]), width =,
oprofile_lims[1]-profile_lims[0], height = ylims[0]-ylims[1],

edgecolor = 'r', facecolor='none', linewidth=1))

Subplots from correction area

xlims = profile_lims

Subplot from correction area

pc = axs[0,1] .pcolormesh(ds.profile, ds.depth,,
~ds['temperature'] ,rasterized=True,vmin=t_lims[0], vmax=t_lims[1], alpha = O.
=3)

pc = axs[0,1] .pcolormesh(dsbad.profile, dsbad.depth,
~dsbad['temperature'],rasterized=True,vmin=t_lims[0], vmax=t_lims[1],
ocmap=cmap)

axs[0,1] .set_xlim(xlims)

fig.colorbar(pc, ax=axs[0,1], label = 'Temperature [$70o$C]')

40

pc = axs[1,1] .pcolormesh(ds.profile, ds.depth,,
~ds['temperature_adjusted'],rasterized=True,vmin=t_lims[0], vmax=t_lims[1],
~cmap=cmap)

axs[1,1] .set_xlim(xlims)

fig.colorbar(pc, ax=axs[1,1], label = 'Temperature [70C]"')

print('Temperature before (top) and after adjustment (bottom).')

print('Profiles and data points that were ignored for thermal lag correction
ware shaded in the top plot.')

print('The profile range used to determine the thermal lag correction is shown,
—on the right:')

Temperature before (top) and after adjustment (bottom).
Profiles and data points that were ignored for thermal lag correction are shaded
in the top plot.

The profile range used to determine the thermal lag correction is shown on the
right:

Temperature, with profile and density outliers removed
0

14
50 1
12
100 +
10
150
8
2004
6
250 -
4
300 -
0 50 100 150 200 250 300 200 205 210 215 220 225 230

Temperature adjusted during thermal lag correction
50
100
150

0
14
12
| 10
| 8
| 6
| 4
0 50 100 150 200 250 300 200 205 210 215 220 225 230

200
250
300

Depth [m]
Temperature [°C]

Depth [m]
Temperature [°C]

[93]: | # RE-PLOTTING WITH THE COND FILTER!

41

fig, axs = plt.subplots(2, 2, figsize=(12, 8), sharey=True, width_ratios=[2.
~5,2], squeeze=True)

Limits

xlims = [0, NUM_PROFILES]
ylims=[300,0]

t_lims = [1023,1033]

Rectangle showing area used to get alpha and tau

from matplotlib.patches import Rectangle

print (f'Drawing rectangle centered at: {profile_lims[0], ylims[OJ}')
rect = #, linestyle='dotted'

pc = axs[0,0] .pcolormesh(ds.profile, ds.depth,,
~ds['density'],rasterized=True,vmin=t_lims[0], vmax=t_lims[1], alpha = 0.
-3, cmap="'PuBu')

pc = axs[0,0] .pcolormesh(dsbad.profile, dsbad.depth,
~dsbad['density'],rasterized=True, cmap = 'PuBu',vmin=t_lims[0],
<vmax=t_lims[1])

axs[0,0] .set_ylim(ylims)

axs[0,0] .set_x1lim(xlims)

fig.colorbar(pc, az=azs[0,0])

axs[0,0] .set_ylabel('Depth [m]"')

axs[0,0] .set_title('Density, with profile and density outliers
~removed',loc='left')

axs[0,0] .add_patch(Rectangle(xy=(profile_lims[0], ylims[1]), width =,
wprofile_lims[1]-profile_1ims[0], height = ylims[0]-ylims[1],

edgecolor = 'r', facecolor='none', linewidth=1))

pc = axs[1,0] .pcolormesh(ds.profile, ds.depth,,
~ds['density_adjusted'],rasterized=True,vmin=t_lims[0], vmax=t_lims[1],
<cmap="'PuBu')

axs[1,0] .set_xlim(xlims)

fig.colorbar(pc, az=azs[1,0])

axs[1,0] .set_ylabel('Depth [m]"')

axs[1,0] .set_title('Density adjusted during thermal lag correction',loc='left')

axs[1,0] .add_patch(Rectangle (xy=(profile_lims[0], ylims[1]), width =,
owprofile_lims[1]-profile_lims[0], height = ylims[0]-ylims[1],

edgecolor = 'r', facecolor='none', linewidth=1))

Subplots from correction area

xlims = profile_lims
Subplot from correction area

42

pc = axs[0,1] .pcolormesh(ds.profile, ds.depth,,
~ds['density'] ,,rasterized=True,vmin=t_lims[0], vmax=t_lims[1], alpha = 0.3,
<cmap="'PuBu')

pc = axs[0,1] .pcolormesh(dsbad.profile, dsbad.depth,
~dsbad['density'],rasterized=True, cmap='PuBu',vmin=t_lims[0], vmax=t_lims[1])

axs[0,1] .set_x1lim(xlims)

fig.colorbar(pc, ax=axs[0,1], label = 'Density [kg/m$~3$]"')

pc = axs[1,1] .pcolormesh(ds.profile, ds.depth,,
~ds['density_adjusted'] ,rasterized=True,vmin=t_lims[0], vmax=t_lims[1],
<cmap="'PuBu')

axs[1,1] .set_xlim(xlims)

fig.colorbar(pc, ax=axs[1,1], label = 'Density [kg/m$~3$]"')

fig.tight_layout ()

print('Density before (top) and after adjustment (middle), with density,
~difference (bottom).')

print('Profiles and data points that were ignored for thermal lag correction
—ware shaded in the top plot.')

print('The profile range used to determine the thermal lag correction is shown,
on the right:')

Density before (top) and after adjustment (middle), with density difference
(bottom) .

Profiles and data points that were ignored for thermal lag correction are shaded
in the top plot.

The profile range used to determine the thermal lag correction is shown on the
right:

43

[94] :

[95]:

Density, with profile and density outliers removed
0

1032
50 4
1030
100 —
Py
— ‘ £
£ Ej
= - =
g 150 1028 z
o]
o c
o
200 4 e
1026
2501
1024
300 T
0 50 100 150 200
Density adjusted during thermal lag correction
3}
1032
1030
o
—_ £
£)
= 1028 =
a 2
o
o
1026
1024

3.5.6 2.4.3 Quantifying improvement

To quantify the improvement of the thermal lag correction further, the area of profile pairs was
re-calculated and compared to the area between profiles prior to correction. This is calculated from
the same quality-controlled data, with suspicious profiles and profile-pairs removed, as during the

thermal lag correction, but using evenly spaced profile pairs across the deployment.

When examining the corrected data (shown in orange) relative to the uncorrected data (shown in
black), we can see that up-down asymmetry was reduced, as well as a greater reduction compared
to using Janzen and Creed constants (shown in red). Overall, we can see a large reduction in the
area between profiles when using the calculated alpha and tau values. When looking at evenly
spaced profiles across the deployment, some pairs have much larger area (e.g. in the middle of the
deployment), whereas others remained quite low. When comparing upcasts and downcasts before

and after correction in a T-S plot, we also see that they are much better aligned.

fname=f'{filepath}/{deploy_name}_thermal_lag.nc'

Set up our constants

fn = 0.5*fs #frequency for Sea-Bird GPCTD

density_cutoff = 1021 #ezclude everything less dense than this from the,
aminimization

num_profs = 100 #number of profiles to include in the subset of data

clean_profs_start = 0#110 #50 #number of profiles to exclude from the start

clean_profs_end = 0#50 #number of profiles to exclude from the end

44

dn_stdev = 1 #how many standard deviations from the mean the area between,
~douwncasts can be

alpha = 0.092 #####AA#HAARHHHARHARRH#AAA# VA lues determined above
tau = 10

alpha2 = 0.06 ####Janzen and Creed
tau2=10.1

Load time series

ts = xr.load_dataset (fname) #ds1. copy (deep=True)

ts = ts.assign_coords(pind=ts.profile_index) #add a profile index coordinate
tot_profs = int(np.nanmax(ts.profile_index.values))

print('Total number of profiles:', tot_profs)

Overwrite conductivity in our working zarray with the clean, aligned,
wconductivity field
ts['conductivity']l = ts.conductivityClean

spike_profiles = xr.DataArray([301,307,308], dims="bad_profiles") ##this is,
<brought from biofouling section

Total number of profiles: 330

[96]: # Determine pairs of profiles for the selected subset of data
ts_sub, profile_bins, profile_bins_all, direction = pgs.profile_pairs(
ts, clean_profs_start, clean_profs_end, num_profs, bad_profiles

Identify boolean index for application of density cutoff
density_bool = ts_sub.density>=density_cutoff

#Determine the RMSD for the subset of profiles with no corrections applied
area_bad = np.full_like(profile_bins_all, False, dtype=bool)

[97]: # Data for the plot below!

Calculate the area between pairs of profiles for the corrected data
Alpha and tau values from above

print (f'Calculating area using alpha {alphat and tau {tault')
area_1, p_ind_1 = pgs.TS_diff ((alpha*1000, tau),

L
~fn,density_bool,area_bad,profile_bins,profile_bins_all,ts_sub,
ret_err=False)

45

Janzen and creed values
print (f'Calculating area using alpha {alpha2} and tau {taul}')
area_2, p_ind_2 = pgs.TS_diff((alpha2+1000, tau2),
(]
~fn,density_bool,area_bad,profile_bins,profile_bins_all,ts_sub,
ret_err=False)

Original, uncorrected values
print (f'Calculating area with no corrections')
area_0, p_ind_0 = pgs.TS_diff((0, 0),
Ll
~fn,density_bool,area_bad,profile_bins,profile_bins_all,ts_sub,
ret_err=False)

[98]: fig, ax = plt.subplots(2, 2, figsize=(9, 6),
constrained_layout=True)
area_uncorrected = area_0
area_corrected=area_1
area_jandc = area_2

profile_index = p_ind_1
n_bins = 50

ax[0] [0] .plot([profile_index,profile_index],,
< [(area_corrected), (area_uncorrected)],
'k', linestyle='-', linewidth = 1);

ax[0] [0] .plot(p_ind_1, area_corrected,

color='orange', marker='o', linestyle='None');
ax[0] [0] .plot(p_ind_1, area_jandc,

color='red', marker='.', linestyle='None');
ax[0] [0] .plot(p_ind_0O, area_uncorrected,

'k.', linestyle='None');
ax[0] [0] .set_ylabel('Area [$"0$C g/kgl', fontsize=16)
ax[0] [0] .set_xlabel('Profile index', fontsize=16)
ax[0] [0] .grid(color='0.5")

Histogram

ax[0] [1] .hist(area_jandc, n_bins, density=True, histtype='bar',
color='red', label='J&C', alpha = 0.5)

ax[0] [1] .hist(area_corrected, n_bins, density=True, histtype='bar',
color='orange', label='Corrected', alpha = 0.5)

ax[0] [1] .hist(area_uncorrected, n_bins, density=True, histtype='bar',
color='black', label='Uncorrected', alpha = 0.5)

ax[0] [1] .1legend (prop={'size': 10})

ax[0] [1] .axvline(x = 0, color = 'k', linestyle = '--')

46

ax[0] [1] .set_xlabel('Area [$"0$C g/kgl', fontsize=16)
ax[0] [1] .grid(color='0.5")

ax[1] [0] .plot(profile_index,
(area_corrected) - (area_uncorrected),
color='blue', marker='.', linestyle='None');
ax[1] [0] .set_ylabel('Area anomaly [$"0$C g/kgl', fontsize=16)
ax[1]1[0] .set_xlabel ('Profile index', fontsize=16)
ax[1] [0] .grid(color='0.5")
ax[1] [0] .axhline(y = 0, color = 'k', linestyle = '--')
ax[1] [0] .axhline(y = np.nanmedian((area_corrected)-(area_uncorrected)), color =,
~'r', linestyle = '-')
ax[1] [0] .text (0, np.nanmedian((area_corrected)-(area_uncorrected)),
f'median: {str(round(np.
~nanmedian((area_corrected)-(area_uncorrected)), 4))}', color = 'r', weight =,
<'bold")

ax[1] [1] .hist((area_corrected)-(area_uncorrected), n_bins, density=True,,
~histtype='bar',
color='blue')
ax[1] [1] .set_xlabel('Area anomaly [$”0$C g/kgl', fontsize=16)
ax[1] [1].grid(color='0.5")
ax[1] [1] .axvline(x = 0, color = 'k', linestyle = '--')
ax[1] [1] .axvline(x = np.nanmedian((area_corrected)-(area_uncorrected)), color =,
~'r', linestyle = '-')
ax[1] [1] . text (np.nanmedian((area_corrected)-(area_uncorrected)), O,
f'median: {str(round(np.
~nanmedian((area_corrected)-(area_uncorrected)), 4))}', color = 'r', weight =,
(—>'b01d')

caption = ('Area between pairs of salinity profiles, calculated ing,
~temperature-salinity space, '

'plotted vs. profile index number (left) and as a histogram (right),,
~for the uncorrected '

'salinity field (orange) and the corrected salinity field (black),,
~and as an anomaly between '

'the uncorrected and corrected fields (bottom row, blue).')

print (caption)

plot_correctedarea(p_ind_2, area_0, area_2, n_bins, caption)
print('Total area mean before correction =', np.nanmean(area_0))
print('Total area mean after correction =', np.nanmean(area_1))
print('Total area anomaly mean =', np.nanmean(area_l-area_0))
print('Total area anomaly median =', np.nanmedian(area_l-area_0))
print ('*kkxkk!')

47

print(f'Top: The area between {num_profs} profile pairs when uncorrected,,
< (black), using Janzen and Creed alpha ')

print(f'and tau values (red) and when corrected with alpha = {alphal} and tau =,
o{tau}, shown by profile index and as a histogram.')

print(f'Bottom: the area change between profile pairs when corrected with
~calculated alpha and tau. Shown by profile index (left) and histogram|
< (right):')

Total area mean before correction = 0.2425031051716113

Total area mean after correction = 0.17343636386298533

Total area anomaly mean = -0.06906674130862596

Total area anomaly median = -0.07357424370162487

skokokok ok

Top: The area between 100 profile pairs when uncorrected (black), using Janzen
and Creed alpha

and tau values (red) and when corrected with alpha = 0.092 and tau = 10, shown
by profile index and as a histogram.

Bottom: the area change between profile pairs when corrected with calculated
alpha and tau. Shown by profile index (left) and histogram (right):

8 .
5 — J&C
— i Corrected
3’ 4 1 : 6 == Uncorrected -|
S—
o 5 1
s 4
— 2
0
pusl 2 4
q 1.
01 1 i [0-
0 50 100 150 200 250 300 0 1 2 3 4 5
Profile index Area [°C g/kg]
D 13 B 4 L
_—
D 100
O 3
S, o075
>
= 050 c "
E o2 - - s
o * s "8 -l
S 0001 o S PP LI
‘u L] .‘4 4 -» - a8
§ -025 - '2.1';3 TR 4
|- o1 [
< 0 50 100 150 200 250 300 -04 -02 00 02 04 06 08 1.0 12
Profile index Area anomaly [°C g/kg]

[99]: #Compare the uncorrected and corrected data in T-S space

x_1im=[28, 34.5]

48

tsO = xr.open_dataset(f'{filepathl}/{deploy_name}_conductivityClean.nc')

#Create a density grid to contour plot isopycnals
S_range = np.linspace(int(np.min(ds.salinity))-0.5,

int (np.max(ds.salinity))+0.5, 1000)
np.linspace(int(np.min(ds.temperature))-1,

int (np.max(ds.temperature))+1, 1000)
S_grid, T_grid = np.meshgrid(S_range, T_range)
density_grid = seawater.eos80.dens0(S_grid, T_grid)

T_range

[100] : #Compare the uncorrected and corrected data in T-S space
print('Temperature-salinity diagrams for all profiles, '
'showing the difference between upcasts (red) and downcasts (blue), '
'for the data without the thermal lag correction applied (left panel) and
'the data with the thermal lag correction applied (right panel):')

x_1lim=[30, 34.5]

#Plotting
fig, ax = plt.subplots(l, 2, sharex=True, sharey=True, figsize=(9,5))

ind = np.where(tsO.profile_direction.values== 1) [0]
ax[0] .plot(tsO.salinity[ind], tsO.temperaturel[ind], 'b.', markersize=2,,

wrasterized=True, label = 'Downcast')

ind = np.where(ts0O.profile_direction.values == -1) [0]

ax[0] .plot(tsO.salinity[ind], tsO.temperaturel[ind], 'r.', markersize=2, alpha =
0.5, rasterized=True, label = 'Upcast')

CS = ax[0] .contour(S_range, T_range, density_grid,
np.arange (1021 ,np.round(np.max(density_grid)),0.5),
colors='k', linewidths=0.5);

ax[0] .clabel(CS, CS.levels, inline=True, fontsize=10)

ax[0] .set_ylabel('Temperature [$”0$C]')

ax[0] .set_xlabel('Salinity [psul')

ax[0] .set_title('Before correction')

ax[0] .set_x1im(x_1im)

ax[0] .grid ()

#Hutud###after correction ©s the thermal lag file

ind = np.where(ts_sub.profile_direction.values== 1) [0]

ax[1] .plot(ts_sub.salinity_corrected[ind], ts_sub.temperature_adjusted[ind], 'b.
«', markersize=2, rasterized=True, label = 'Downcast')

ind = np.where(ts_sub.profile_direction.values==-1) [0]

49

ax[1] .plot(ts_sub.salinity_corrected[ind], ts_sub.temperature_adjusted[ind], 'r.

~', markersize=2, alpha =

CS =

ax[1]
ax[1]
ax[1]
ax[1]
ax[1]

ax[0]
ax[1]

0.5, rasterized=True, label = 'Upcast')

ax[1] .contour(S_range, T_range, density_grid,

np.arange (1021 ,np.round(np.max(density_grid)),0.5),
colors='k', linewidths=0.5);

.clabel(CS, CS.levels, inline=True, fontsize=10)
.set_ylabel('Temperature [$~0$C]')
.set_xlabel('Salinity [psul')
.set_title(f' (After correction: tau =
.grid()

10, alpha = {alphal)')

.legend (prop={'size': 10});
.legend (prop={'size': 10});

Temperature-salinity diagrams for all profiles, showing the difference between
upcasts (red) and downcasts (blue), for the data without the thermal lag
correction applied (left panel) and the data with the thermal lag correction
applied (right panel):

Before correction (After correction: tau = 10, alpha = 0.092)

o KA o ¥ W &
) o & @
14 - i) i ~
//{ 0 ; q // o 2 9
& © &
> S\ ~
12 - 1 $ - :
/ /|
/ g
— j -
g 104+ — S //
e Tl
2 / 2 /
! !
5 8- / g /
=9 /! =9 i/
5 / 1 5 /
= ;’I S = /
~
'

Downcast Downcast
Upcast / / / I.’f Upcast | .'"I / / /
2 1 — ! } ! } / ! } i —1 J'l } 1 } i I } i
30 31 32 33 34 30 31 32 33 34

Salinity [psu] Salinity [psu]

4 3.0 Summary of corrections applied to delayed mode data for
this mission

Identification of anomalous conductivity values: * Profiles with spikes in the salinity data
from biofouling were set to NaN. * Anomalous conductivity values at the surface caused by air
bubbles in the cell were set to NaN.

50

Sensor alignment correction: * No sensor alignment correction was applied.

Identification of questionable salinity profiles: * Numerous salinity profiles were flagged as
‘bad’ and their values set to NaN for the thermal lag correction. The range of profiles examined
was not limited, and these profiles were not removed from the final corrected salinity dataset.

Thermal lag correction: * The directly determined values for the thermal lag correction pro-
duced an improvement that was larger than the recommended values from Janzen and Creed (2011).
* The correction overall significantly reduced the root-mean squared difference for the area between
between pairs of profiles. * The final thermal lag correction was applied using the calculated values
of:

[101]: print(f'alpha = {alpha} and tau = {tau}')
alpha = 0.092 and tau = 10

[102]: | # Set up and our final datasets
ts_final = ts
tsO = pgs.get_timeseries(filepath, deploy_name) ##we are changing the,
~spike_clean v

[103]: | #update processing attributes

tsO.attrs['processing_details'] = 'Processing details are located on the
~C-PROOF website for this mission under the reports tab.'

tsO.attrs['processing_tech'] = 'Lauryn Talbot; ltalbot@uvic.ca'

tsO.attrs['citation'] = '"Klymak, J., & Ross, T. (2025). C-PROOF Underwater,
~Glider Deployment Datasets [Data set]. Canadian-Pacific Robotic Ocean
~0bserving Facility.doi:10.82534/44DS-K310""

tsO.attrs['references'] = 'https://doi.org/10.82534/44DS-K310'

Uncorrected conductivity
tsO['conductivity'].attrs['comment'] = 'uncorrected conductivity'

Adjusted (aka cleaned) conductivity

tsO['conductivity_adjusted'] = ts_final.conductivity.copy()
ts0.conductivity.values = ts_final.conductivityClean.values
tsO['conductivity_adjusted'] .attrs['comment'] = 'adjusted conductivity'
tsO['conductivity_adjusted'] .attrs['processing_report'] = processing report
tsO['conductivity_adjusted'] .attrs['processing date'] = processing_date
tsO['conductivity_adjusted'] .attrs['processing_date'] = processing_protocol

Uncorrected temperature
tsO['temperature'] .attrs['comment'] = 'uncorrected temperature [degC]'

Adjusted temperature

tsO['temperature_adjusted'] = ts_final.temperature_adjusted.copy()
tsO['temperature_adjusted'].attrs['comment'] = 'adjusted temperature [degC]'
tsO['temperature_adjusted'].attrs['processing_report'] = processing_report
tsO['temperature_adjusted'].attrs['processing_date'] = processing_date

o1

[104] :

tsO['temperature_adjusted'].attrs['processing_date'] = processing_protocol

Uncorrected salinity
tsO['salinity'].attrs['comment'] = 'uncorrected salinity [psul'

Corrected salinity

tsO['salinity_adjusted'] = ts_final.salinity_corrected.copy()
tsO['salinity_adjusted'] .attrs['comment'] = 'adjusted salinity [psul'
tsO['salinity_adjusted'].attrs['method'] = ' '

tsO['salinity_adjusted'] .attrs['processing_report'] = processing_report
tsO['salinity_adjusted'] .attrs['processing_date'] = processing_date
tsO['salinity_adjusted'] .attrs['processing_protocol'] = processing_protocol

Unadjusted denstity
tsO['density'] .attrs['comment'] = 'unadjusted density'

Adjusted density

tsO['density_adjusted'] = ts_final.density_adjusted.copy()

tsO['density_adjusted'].attrs['comment'] = 'density from adjusted salinity
< [psu] and temperature [degC]'

tsO['density_adjusted'].attrs['method'] = ' '

Visualize the final data

fig, ax = plt.subplots(l, 1, figsize=(6, 6))

X_LIM = [30,34.5]

T-S diagram for fully corrected data

ax0 = ax

ax0.plot(ts0.salinity,ts0.temperature, 'k. ' ,markersize=2, label = "Delayed-mode,
wdata")

ax0.plot(ts0.salinity_adjusted,tsO.temperature_adjusted,'.',markersize=2, label
o= "Adjusted and filtered data")

#Create a density grid to contour plot isopycnals
np.linspace(np.nanmin(ts0.salinity_adjusted)-0.5,
np.nanmax (ts0.salinity_adjusted)+0.5, 1000)
T_range = np.linspace(np.nanmin(ts0.temperature_adjusted)-1,
np.nanmax (tsO.temperature_adjusted)+1, 1000)
S_grid, T_grid = np.meshgrid(S_range, T_range)
density_grid = seawater.eo0s80.dens0(S_grid, T_grid)

S_range

CS = ax0.contour(S_range, T_range, density_grid,
np.arange (1014,
np.round (np.max(density_grid)),0.5),
colors='k', linewidths=0.5);
ax0.clabel(CS, CS.levels, inline=True, fontsize=10)
ax0.set_xlabel('Salinity [psul', fontsize=18)
ax0.set_ylabel('Temperature [$ 0$C]', fontsize=18)

52

ax0.set_x1im(X_LIM)
ax0.grid()
ax0.legend ()

print('The corrected temperature and salinity fields '
'shown in a T-S diagram with density contours:')

The corrected temperature and salinity fields shown in a T-S diagram with
density contours:

- Delayed-mode data
- Adjusted and filtered data

16

=
I

=
%]
1

Temperature [°C]

T T T T T
30.0 30.5 31.0 315 32.0 325 33.0 335 340 345

Salinity [psu]

[105]: | # Save our final datasets
ts0.to_netcdf (f'{filepath}{deploy_name}_CTDadjusted.nc')

53

print (f'Corrected data saved to file: {filepath}/{glider_namel}/{deploy_name}/
~{deploy_name}_adjusted.nc')

[106]: | # ds.close()
import pyglider.ncprocess as ncprocess
ncprocess.make_gridfiles(f'{filepath}{deploy_name}_ CTDadjusted.nc',
f'{filepath}', deployfile, fnamesuffix='_CTDadjusted')

[106]: 'deployments/dfo-walle652/dfo-walle652-20200616//dfo-
walle652-20200616_grid_CTDadjusted.nc'

[107]: | # Open the grid file
ds=xr.open_dataset (f'{filepath}{deploy_name}_grid_CTDadjusted.nc')
list(ds.keys())

RE-PLOTTING WITH THE COND FILTER!
fig, axs = plt.subplots(4, 1, figsize=(11, 10), sharey=True, sharex=True)

xlims = [0, NUM_PROFILES]
ylims=[400,0]

pc = axs[0].pcolormesh(ds.profile, ds.depth,
~ds['salinity_adjusted'] ,rasterized=True)

axs[0] .set_ylim(ylims)

axs[0] .set_xlim(xlims)

fig.colorbar(pc, ax=axs[0], label = 'Salinity [psul')

axs[0] .set_title('Adjusted salinity',loc='left')

pc = axs[1] .pcolormesh(ds.profile, ds.depth,,

~ds['temperature_adjusted'],rasterized=True,cmap='plasma')
fig.colorbar(pc, ax=axs[1], label = 'Temperature [$ 0$C]')
axs[1] .set_title('Adjusted temperature',loc='left"')

pc = axs[2] .pcolormesh(ds.profile, ds.depth,,

~ds['conductivity_adjusted'],rasterized=True,cmap="'cividis"')
fig.colorbar(pc, ax=axs[2], label = 'Conductivity [S/m]')
axs[2] .set_title('Adjusted conductivity',loc='left')

pc = axs[3].pcolormesh(ds.profile, ds.depth,,
wds['ozygen_concentration'],rasterized=True, cmap="inferno’')

fig.colorbar(pc, az=azs[3])

axs[3].set_title('Oxygen Concentration’,loc='left')

pc = axs[3].pcolormesh(ds.profile, ds.depth,,

~ds['density_adjusted'],rasterized=True,cmap='inferno')
fig.colorbar(pc, ax=axs[3], label = 'Density [kg/m$~3$]"')
axs[3] .set_title('Adjusted density',loc='left')

54

axs[0] .set_ylabel('Depth [m]')
axs[1] .set_ylabel('Depth [m]')
axs[2] .set_ylabel('Depth [m]')
axs[3] .set_ylabel('Depth [m]"')

print('The corrected salinity and temperature, shown with filtered conductivityy,
~and adjusted density:')

The corrected salinity and temperature, shown with filtered conductivity and
adjusted density:

Adjusted salinity
0

F34.0
100 - =
— | =
E 335 E
% 200 4 -33.0 g
o 325 %
300 4 233
-32.0
400 T T T T
0 Adjusted temperature
[} 14
_ 1004 L 12 g
E L 10 &
£ 2004 E
X 8 g
300 - b6 E
&
a4
400 T T
Adjusted conductivity
0 am
F3.8
_ 100+ %
£ 36 2
= |
% 200 %
=
a L
300 | 34 E
o
400 . 3.2
Adjusted density
0 =
100 4 - 1030
E g
£ 200 - - 1028 —
g z
Wl
[a] L =
300 4 1026 g
400 | 1024

[108]: | display(Markdown('./docs/CTD_References.md'))

[]1:

5 References

1.

Ferrari, R., and Rudnick, D. L. Thermohaline variability in the upper ocean, J. Geophys.
Res., 105(C7), 16857-16883, 2000.

. Garau, B., Ruiz, S., Zhang, W. G., Pascual, A., Heslop, E., Kerfoot, J., & Tintoré, J. Thermal

Lag Correction on Slocum CTD Glider Data, J. Atmos. Oceanic Technol., 28(9), 1065-1071,
2011.

. Janzen, C. D., and Creed, E. L. Physical oceanographic data from Seaglider trials in stratified

coastal waters using a new pumped payload CTD, OCEANS’11 MTS/IEEE KONA, Waikoloa,
HI, USA, 1-7, 2011.

. Morison, J., Andersen, R., Larson, N., D’Asaro, E., & Boyd, T. The correction for thermal-lag

effects in Sea-Bird CTD data, J. Atmos. Oceanic Technol., 11, 1151-1164, 1994.

. Sea-Bird Seasoft V2:SBE Data Processing - CTD Data Processing & Plotting Software for

Windows, Sea-Bird Scientific, software manual revision 7.26.8, 2017.

. Sea-Bird User Manual - GPCTD Glider Payload CTD (optional DO) - Conductivity, Temper-

ature, and Pressure (optional DO) Sensor with RS-232 Interface, Sea-Bird Scientific, manual
version 008, 2021.

56

	CTD corrections applied to delayed-mode data
	1.0 Preamble
	1.1 Set up the processing
	1.2 Profile Check
	1.3 Delayed-mode data prior to corrections

	2.0 Corrections applied to delayed mode data for this mission
	2.1.1 Identification and removal of anomalous conductivity values
	2.1.2 Remove spikes from biofouling
	2.2 Identifying questionable salinity profiles
	2.3 Sensor alignment correction
	2.4 Thermal lag correction
	2.4.1 Pre-processing steps:
	2.4.2 Defining the range to calculate \alpha and \tau:
	Comparing the error measurements between estimated alpha & tau and Janzen and Creed values:
	Finding alpha and tau values with lowerest error estimates:
	Before and after plots of the thermal lag correction
	2.4.3 Quantifying improvement

	3.0 Summary of corrections applied to delayed mode data for this mission
	References

